

Province of the **EASTERN CAPE** EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 11

NOVEMBER 2012

ELECTRICAL TECHNOLOGY MEMORANDUM

MARKS: 200

This memorandum consists of 11 pages.

QUESTION 1: TECHNOLOGY, SOCIETY AND THE ENVIRONMENT

1.1	des • A so	bund knowledge of electronics to ensure the best possible technical ign to produce a quality product. $$ bund knowledge in handling financial matters to ensure a well-run tainable business. $$			
	• (AN	Y RELEVANT ANSWER WILL BE ACCEPTED)	(2)		
1.2	 Do hom Use Low 	tch off all the unused electrical appliances and lights. \checkmark not use your dishwasher, laundry equipment, coffee maker or other ne heavy appliance after 7 pm. \checkmark e microwave oven to cook small quantities of food. \checkmark ver your thermostat a degree or two degrees. \checkmark Y RELEVANT ANSWER WILL BE ACCEPTED)	(4)		
1.3	Cell ph	one.√			
	<u>Positiv</u>	<u>e</u> : Contact with family and friends any time you want. \checkmark			
		<u>/e</u> : Expose to pornography on phones.√ RELEVANT ANSWER WILL BE ACCEPTED)	(3)		
1.4	Comm	unication skill	(1) [10]		
QUE	STION 2	: TECHNOLOGICAL PROCESS			
2.1	• Ider	ntify the problem. \checkmark			
	• Inve	estigate. √			
	 Do research. √ 				
	 Assess. √ 				
		cess. √ ⁄ THREE	(3)		
2.2	2.2.1	Design and build an electronic warning sign to alert the traffic about cyclists and athletes. $\sqrt[4]{\sqrt{4}}$	(3)		
	2.2.2	 The device should be portable. √ 			
		 It should be easy to use. √ 			
		 It should be easy to maintain. √ 			
		• It should flash colourful lights visible to motorists. \checkmark	(4) [10]		

(NOVEM	BER 2012) ELECTRICAL TECHNOLOGY (Memo)	3
QUE	STION 3: OCCUPATIONAL HEALTH AND SAFETY	
3.1	Safety is the main consideration behind all rules and regulations contained in the CODE of PRACTICE for the wiring of electrical installation. $\sqrt{4}$	(2)
3.2	 There should be no slippery surface. √ Tidy workshop. √ (ANY RELEVANT ANSWER WILL BE ACCEPTED) 	(2)
3.3	 There should be enough space between the machines. √ Poorly ventilated work area.√ (ANY RELEVANT ANSWER WILL BE ACCEPTED) 	(2)
3.4	 Stand firmly when working with a portable drilling machine. √ Remove the chuck key from the chuck after loosening or tightening the bit. √ 	(2)
3.5	Ensure the main supply has been switched off. Use a wooden or non-conductive object to release/remove him/her from the conductor. $\sqrt{4}$	(2) [10]
QUE	STION 4: INSTRUMENTS	[10]
4.1	8 div = 360° One full cycle 1 div = 45° The waves are 45° apart I lags V by 45°√√	(2)
4.2	Volt/div = 10 V V_{max} = No. of div x volt /div = 3 x 10 $$ = 30 V $$	(2)
4.3	T = time /div x No. of div $$ = 2,5 ms x 8 $$ = 20 ms $$	(3)
4.4	$V_{RMS} = 0.707 \times V_{max} $ = 0.707 × 30 $$ = 21,21 V $$	(3) [10]

QUESTION 5:		I	PRINCIPLE OF SINGLE-PHASE GENERATION	
5.1	two mag	sides Inetic	nductor loop is rotated through the magnetic field, each of the of the loop move through the magnetic field cutting the lines of flux. $$	
	• Inis	actio	n induces an alternating voltage across the conductor loop. \checkmark	(2)
5.2	When th	e loop	is perpendicular to the magnetic field. $\sqrt{?}$	(1)
5.3	5.3.1	I _{ave}	i = 12 sin 314t = 0,637 x I_{max} = 0,637 x 12 \checkmark = 7,64 A \checkmark	(2)
	5.3.2	т	= 1,5 ms. i = 12 sin 314t = 12 sin 314° x 1,5 x10 ⁻³ x 57,3 $\sqrt{\sqrt{10}}$ = 5,45 A $\sqrt{10}$	(3)
5.4	5.4.1	Vrms	\sqrt{rms} = 0,707 x Vmax x= <u>230</u> √ 0,707 = 325,32 V √	(2)
	5.4.2	Vave	= 0,637 x Vmax = 0,637 x 352,32√ = 207,23 V√	(2)
	5.4.3	Т	$= \frac{1}{F} \sqrt{\frac{1}{50}} \sqrt{\frac{1}{50}}$ $= 20 \text{ ms} \sqrt{\frac{1}{50}}$	(3) [15]

QUESTION 6: RLC CIRCUITS

- 6.1 <u>Impedance</u> of the circuit is the total opposition a circuit offers to the flow of current. It depends entirely to the frequency of the supply when connected to the alternating voltage supply. $\sqrt{\sqrt{3}}$
- 6.2 6.2.1 Nothing is going to happen as the resistor and the frequency have no relationship. $\sqrt{}$ (1)
 - 6.2.2 Capacitive reactance will decrease. \checkmark (1)
 - 6.2.3 Inductive reactance will also increase. \checkmark

6.3 6.3.1 $X_L = 2\pi f L \sqrt{}$

 $X_{\rm C} = 1 \sqrt{2 \pi f C}$

$$= 1 \sqrt{2.\pi .50.220.10^{-6}}$$

= 14,47 ΩV

$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} \sqrt{22^{2} + (23,56 - 14,47)^{2}} \sqrt{23,80}$$

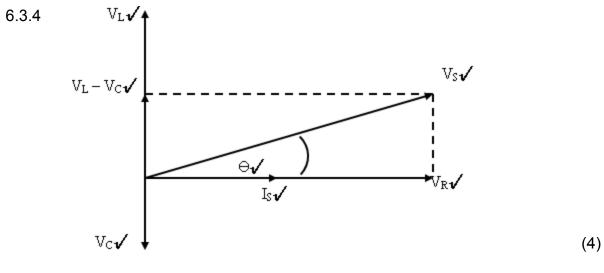
= 23,80\times (9)

6.3.2
$$I = \underbrace{V}_{Z} \bigvee_{Z}$$
$$= \underbrace{24}_{23,8} \bigvee_{Z}$$
$$= 1,01 \text{ A } \bigvee_{Z}$$

(3)

6.3.3
$$\theta = \cos^{-1} (R/Z) \sqrt{}$$

= $\cos^{-1} (22/23,8) \sqrt{}$
= 22,43° $\sqrt{}$ (3)


(3)

(1)

(1) **[30]**

(2)

[10]

6.4 •
$$X_L = X_C. \sqrt{2}$$

- Impedance is at minimum. √
- Current is at maximum. √ (2)
- 6.5 Radio tuning circuit. √
 - Filtering circuit. √
 - Oscillating circuit. $\sqrt{}$ (2)
- 6.6 Yes √

QUESTION 7: SEMI-CONDUCTOR DEVICES

7.1 Gain =
$$\frac{\text{Voutput}}{\text{Vinput}}$$

= $\frac{3\text{Vp} - \text{p}}{0.02\text{Vp} - \text{p}}$
= 150 \checkmark (3)

- 7.2 Transistor as a switch. \checkmark
 - Transistor as an amplifier. √
- 7.3 The trigger angle (and so the power available to the load) is controlled by R₂. R₁ √and R₂ form a voltage divider which with D1 sets up the necessary triggering potential. √ D₂ is the triggering device which conducts a positive voltage pulse to the gate only once its breakdown voltage of 0.6 V is overcome. √ By varying R₂ the voltage level at the gate of the thyristor will vary, √ so changing the trigger angle and therefore the power available to the lamp, changing the brightness of the lamp. √ (5)

8.1

QUESTION 8: AMPLIFIERS

- Common Emitter √ •
 - Common Base √ •
 - Common Collector √ ٠

8.2
$$Ic = \frac{Vcc}{Rc}$$
$$Rc = \frac{Vcc}{Ic}$$
$$Rc = \frac{24Vdc}{150 \times 10^{-3}}$$

8.3

$$Rc = 160 \Omega$$
(3)

$$Xc = 1
2\pi f C \sqrt{} C = \frac{1}{2\pi f X c \sqrt{}}$$

$$= \frac{1}{2\pi 100 \times 33}$$

$$= 48,23 \times 10^{-6}$$

$$= 48,23 \mu f \sqrt{}$$
(4)
[10]

QUESTION 9: TRANSFORMERS

9.1	 Instrument transformer √ Power transformer √ 		
9.2	9.2.1	Transformer may be overloaded. $\sqrt{4}$	(2)
	9.2.2	 Oil √ Air √ Water√ 	(3)
	9.2.3	$I_P = S / V_P $ = 1 100 000 / 11000 $$ = 100 A $$	(3)

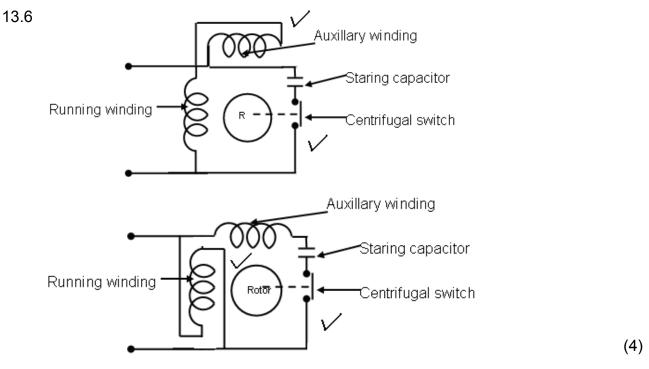
(3)

	9.2.4 $I_{S} = \underline{I_{P}.V_{P}} \sqrt{V_{S}}$ = $\frac{100 \times 11000}{230} \sqrt{V_{S}}$	
	= 4 782,61 A√	(3)
9.3	 Shell type √ 	
	 Core type √ 	(2) [15]
QUE	STION 10: POWER SUPPLY	
10.1	 Transformer √ Rectifier √ Smoothing √ 	
	Regulation √	(4)
10.2	Smoothing the ripples from the rectifier. $\sqrt{4}$	(2)
10.3	As the input voltage rises above the Zener breakthrough voltage, \checkmark the internal resistance of the Zener will lower and allow current to pass through it. \checkmark This will result in more current flowing into the base of the transistor, \checkmark causing its internal resistance to lower and as a result thereof the voltage over the transistor will lower as well, \checkmark thus resetting the output voltage. \checkmark	(5)
10.4	10.4.1 Electrolytic capacitor √	(1)
	10.4.2 Photo-diode √	(1)
10.5	Full Wave Rectification Half wave Rectification	(2) [15]

(5)

QUESTION 11: LOGIC CIRCUITS

- 11.1 11.1.1 NAND Gate $\sqrt{}$ (1)
 - 11.1.2 NOR Gate \checkmark (1)
 - 11.1.3 NOT Gate √ (1)


$$F = \overline{A.B} + \overline{A.C}$$

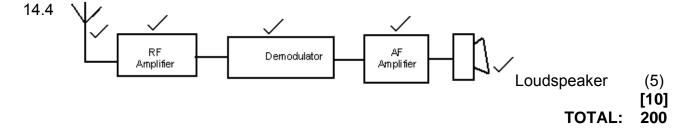
^{11.3}
$$F = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

 $= \overline{\mathbf{A} \cdot \mathbf{B}} \cdot \overline{\mathbf{A} \cdot \mathbf{C}} \checkmark$
 $= \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A} \cdot \mathbf{C} \checkmark$
 $= \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A} \cdot \mathbf{C} \checkmark$ (4)

- 11.4 11.4.1 $1\sqrt{}$ (1)
 - ^{11.4.2} 1√ (1)
 - ^{11.4.3} **1**√ (1)
- 11.5 Alarm Systems √
 Computers √ (2)
- 11.6 11.6.1 X + Y (1)
 - 11.6.2 1 (1)
 - 11.6.3 X (1)
 - [20]

QUESTION 12: PROTECTIVE DEVICES

12.1	12.1.1	Live in terminal \checkmark	(1)	
	12.1.2	Live out terminal √	(1)	
	12.1.3	Trip switch √	(1)	
	12.1.4	Moving contact √	(1)	
12.2	12.2.1	40 A √	(1)	
	12.2.2	20 A √	(1)	
12.3	installati	function of an earth-leakage relay unit is to automatically disconnect an allation or circuit from the supply in the event of a leakage of 20 mA or e flowing to earth. $\sqrt{4}$		
12.4	 In the event of an overload or fault, all poles of the circuit are positively disconnected. √ The devices are also capable of remote control by push-buttons, by under- 			
			(2) [10]	
QUE	STION 13	: OPERATING PRINCIPLES OF SINGLE-PHASE MOTORS		
13.1	13.1.1	Running windings √	(1)	
	13.1.2	Auxiliary winding √	(1)	
	13.1.3	Starting capacitor √	(1)	
	13.1.4	Centrifugal switch √	(1)	
13.2	Capacito	citor-start induction motor \checkmark		
13.3	To open up at about 75% of operating speed and remove the starting capacitor and starting winding from the supply. $\sqrt{}$			
13.4	Where a good starting torque is required $\sqrt{\sqrt{1}}$ i.e. motors that will start under load. $\sqrt{1}$			
			(3)	
13.5 The motor will not automatically start because the two phase effect has no been created. $\sqrt{}$			(2)	



13.7 The two capacitors create a phase shift between the current in the main winding and the current in the starting winding. √√ This in turn creates a two phase effect in the stator which created a rotating magnetic field that is required to start the motor. √√

13.8		
	Stop	
	contactor√	(5) [25]

QUESTION 14: ELECTRONIC COMMUNICATION

- 14.1 <u>Modulation</u> is the process of combining the information with the carrier wave. $\sqrt{\sqrt{1-1}}$
- 14.2 Yes
- 14.3 The capacitor is acting as a filter, removing the RF and producing an audio signal on the output. √

(4)

(2)

(1)