

Province of the **EASTERN CAPE** EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2012

MATHEMATICS P3 MEMORANDUM

MARKS: 100

This memorandum consists of 13 pages.

QUE	STION 1		
1.1	2; 4; 10; 20	(3)	√√√ 4; 10; 20
1.2	2a = 4		
	a = 2		$\checkmark a = 2$
	3a + b = 2		
	3(2) + b = 2		
	6 + b = 2		
	b = -4 (OR OTHERWISE)		✓ b = -4
-	a+b+c=2		
-	2 - 4 + c = 2		
	c = 4		\checkmark c = 4
	2		
	$T_n = an^2 + bn + c$		2
	$T_n = 2n^2 - 4n + 4$	(4)	$\checkmark T_n = 2n^2 - 4n + 4$
		[7]	
QUE	STION 2		
2.1	875		
2.1	$\frac{67.5}{100} \times 36\ 600$ OR $36\ 600 - 12,5\%\ (36\ 600)$		✓ 87,5 or 12,5%
	$= 32\ 025$ $= 32\ 025$	(2)	✓ answer
2.2	Increase = $41\ 109 - 36\ 600$ = 4509		√ 4509
	Percentage increase = $\frac{4509}{36600} \times 100$ = 12,32%	(2)	✓ answer
2.3	Average monthly sales = $\frac{32025+36600+41109}{3}$		✓ 36 578
	= 36 578		
	No, because 36 578 < 37 000	(2)	✓ No/reason
		[6]	

QUES	ΓΙΟΝ 3		
0.1		1	16
3.1	IQ score > 115		$\sqrt{\frac{16}{100}}$
	$\frac{16}{100} \times 48\ 000\ 000$		
	= 7680000 people	(2)	✓ answer
3.2	IQ score < 130		✓ <u>98</u>
	$=\frac{98}{100} \times 48\ 000\ 000$		100
	$= 47\ 040\ 000\ \text{people}$	(2)	✓ answer
3.3	48 000 000 - 47 040 000 = 960 000		✓ 960 000
	$\frac{960\ 000}{48\ 000\ 000} \times 100$		√ answar
	= 2% OR answer only (turi marks)	(2)	• answer
3.4	Sample = $\frac{4800000}{48000000} \times 100$		√ 10%
	= 10%		
	Yes, sample is 10% of the population.	(2)	✓ conclusion
		[8]	
OUES			
QUES			
4.1	4.1.1		✓ A only/ B only
	AB		$\checkmark A \cup B$
			$\checkmark (A \cup B)'$
	0,3		
		(3)	
	4.1.2 For mutually exclusive events:		
			✓ probability rule
	$P(A) + P(B) = P(A \cup B)$ 0,4 + 0,5 = 0,7		\checkmark substitution
	$0,9 \neq 0,7$		
	$\therefore P(A) + P(B) \neq P(A \cup B)$		
	NOT mutually exclusive events	(3)	\checkmark conclusion

	4.1.3	For inc	lepende	ent events:					✓ probability rule
		$P(A) \times$	P(B) =	$P(A \cap B)$					
		P(A) +	P(B) -	$P(A \cap B) =$	$P(A \cup B)$				✓ expansion
		0,4 +	-0,5 –	$P(A\cap B) =$	0,7				
			-	P(A B) =	-0,2				
				P(A B) =	0,2				
		· P(A	$) \times P(R)$	$) = 0.4 \times 0.4$	5				
		·· 1 (A) ^ I (D	= 0.2	5				✓ answer
		· P(A	$) \times P(R)$	$P(A \cap B) = P(A \cap B)$					
		\therefore inde	enenden	t events				(4)	✓ conclusion
			<u>p</u>					(1)	
4.2	4.2.1								
			-			-			
		Ages	< 30	30 - 39	40 - 49	≥50	TOTALS		✓ ages
		<							✓ qualification
	Onelifie								
	Qualific 3 year	ations							
	5 year,	mal	15	152	102	221	400		
	4 vear	mai	15	132	102	221	490		
	professio	nal	43	337	311	166	857		
	Degree	,	15	551	511	100	007		
	professio	onal	211	578	298	145	1232		
	Higher d	egree,							
	professio	onal	12	121	127	37	297		
	Degree,	no							
	professio	onal	13	55	45	15	128		
		~	•••	10.10					
	TOTAL	S	294	1243	883	584	3004	(2)	
	422			2.94+12	43				1 addition
	4.2.2	P (teac	her < 4	$(0) = \frac{371112}{3004}$					
				_ 1537					
				3004 - 0.51				(2)	✓ answer
				- 0,31				(2)	
	4.2.3	P (teac	her < 4	0 and profe	ssional de	gree)			✓ addition
		- ($=\frac{211+12+}{211+12+}$	578+121	()			
				922 30	04				
				$=\frac{322}{3004}$					
				= 0,31				(2)	✓ ✓ answer

4.2.4	P (teacher, no degree) = $\frac{490+857}{3004}$		✓ addition
	$=\frac{1347}{}$		
	$=0,45^{3004}$	(2)	✓ answer
4.2.5	P (teacher > 40, no degree) = $\frac{102+221+311+166}{2}$		✓ addition
	$=\frac{800}{3004}$		
	= 0,27	(2)	✓ answer
4.2.6	For mutually exclusive events:		\checkmark addition
	$P(A) + P(Q) = P(A \cup Q)$		
	$\frac{294}{3004} + \frac{857}{3004} = \frac{211}{3004}$		✓ answer
	0,383 ≠ 0,070		
	not mutually exclusive events	(3)	✓ conclusion
		[23]	

6 MATHEMATICS P3 (SEPTEMBER 2012)

QUE	STION :	5	QUESTION 5					
5.1	Numbe	r of letters available: 26		✓ 26 and 9				
	Numbe	r of digits available: 9						
	Must h	ave a total $\geq 75\ 000$		✓ inequality				
	1 digit:	$9 \times 26 = 234$						
	2 digits	$: 9 \times 9 \times 26 = 2106$						
	3 digits	$: 9 \times 9 \times 9 \times 26 = 18\ 954$		✓ multiplication				
	4 digits	$: 9 \times 9 \times 9 \times 9 \times 26 = 170\ 586$						
	∴ The	inventory system must have FOUR digits.	(4)	✓ conclusion				
5.2	5.2.1	$5 \times 3 = 15$	(1)	✓ answer				
	5.2.2	${}^{8}C_{2} = 28$ ways		✓ counting				
		OR		principle				
		7 + 6 + 5 + 4 + 3 + 2 + 1 = 28	(2)	✓ answer				
			[7]					

(SEPTEMBER 2012)

MATHEMATICS P3

QUESTION 8

8.1			1 55%	D
	8.1.1	$\hat{O}_1 = 2A\hat{D}B$ (angle at centre = 2 × angle at circumf.) = 2 (55°) = 110°	(2)	✓ statement ✓ reason
	8.1.2	$\hat{A}_2 = 35^\circ$ (ΔAOB is isosceles, $OB = OA$ radii)		✓ statement ✓ reason
		$BAD = 60^{\circ} \text{ (sum of opposite. } 2^{\circ} \text{ of cyclic quad.} = 180^{\circ})$ $OÂD = 60^{\circ} - 35^{\circ}$ $= 25^{\circ}$	(4)	✓ statement/reason ✓ answer
			× /	

8.2	R	P S 1 3 2 2 2 2 2 2 3 2 2 2 3 2 2 3 2 3 2 2 3 2 3 2 3	2	T
		-		
	8.2.1	$\hat{Q}_3 = x$ (two tangents joining from the same point) $\hat{R} = x$ (tangent/chord theorem) $\hat{S}_1 = x$ (corresponding angles, RQ ST	(3)	 ✓ answer/reason ✓ answer/reason ✓ answer/reason
	8.2.2	 Q̂₃ = Ŝ₁ = x (see above) ∴ TPSQ is a cyclic quadrilateral; angles subtended by the same chord are equal. 	(2)	✓ statement✓ conclusion
	8.2.3	$T\hat{P}Q = \hat{S}_2 \ (\angle's \text{ on same chord: TPSQ is a cyclic quadrilateral})$ $T\hat{P}Q = \hat{S}_1 = x \text{ (from QUESTION 8.2.1)}$ $\therefore \hat{S}_1 = \hat{S}_2$ TS bisects $P\hat{S}Q$	(2)	 ✓ statement ✓ conclusion/ reason
	0.0.1			
	8.2.4	$Q_1 = S_2 = x$ (alternate angles, RQ ST) $P\hat{R}Q = \hat{Q}_1 = x$ (proven in QUESTION 8.2.1) $\therefore \Delta$ RQS is an isosceles triangle, base angles are equal.	(2)	 ✓ statement/reason ✓ statement/ conclusion
			[15]	

QUESTION 9

	B		2 A
9.1	In $\triangle ABC$ and $\triangle ADB$: \hat{A}_1 is common		✓ statement/reason
	$\hat{B}_{1} = \hat{D}_{1} \text{ (tangent/chord theorem)}$ $\therefore \Delta \text{ABC} / / / \Delta \text{ADB} (\angle, \angle, \angle)$ $\therefore \frac{AB}{AD} = \frac{AC}{AB}$ $\therefore \text{AB}^{2} = \text{AC.AD}$	(3)	✓ statement/reason✓ conclusion
9.2	In $\triangle ACE$ and $\triangle AED$: \hat{A}_2 is common $\hat{E}_1 = \hat{F}_1$ (alternate angles, $AE \parallel GF$) $\hat{D}_2 = \hat{F}_1$ (ext. angle of cyclic quadrilateral GDCF) $\therefore \hat{E}_1 = \hat{D}_2$ $\therefore \Delta ACE ///\Delta AED$ ($\zeta \neq \zeta$)	(3)	 ✓ statement/reason ✓ statement/reason ✓ statement/reason
	$\therefore \Delta A C E / / \Delta A E D (\angle, \angle, \angle)$	(3)	

11

 12
 MATHEMATICS P3
 (SEPTEMBER 2012)

9.3	$\frac{AE}{\Delta ACE} = \frac{AC}{\Delta ACE} (\Delta ACE / / \Delta AED)$		✓ statement/reason
	$ \begin{array}{c} AD & AE \\ \cdot & \Delta F^2 = \Delta C \ \Delta D \end{array} $		
	and		
	$AB^2 = AC AD$ (proved in OUESTION 9.1)		✓ deduction
	$AB^{2} = AF^{2}$		
	$AB = \Delta F$		
	AD - AL	(3)	✓ conclusion
		[9]	
OUES	ΓΙΟΝ 10		
QUES			
	A B		
10.1	$\left \frac{AL}{EC} = \frac{2}{1}$ (given)	(1)	✓ answer
10.2	$\frac{AD}{DF} = \frac{AE}{EC} = \frac{2}{1}$ (line to one side of Δ)	(1)	✓ statement

10.3	$\frac{AD}{D} = \frac{1}{D}$		✓ ratio
	$\begin{array}{ccc} AB & 3 \\ 2x & 1 \end{array}$		
	$\frac{1}{AB} = \frac{1}{3}$		$\checkmark AB = 6x$
	AB = 6x		
	$\therefore \frac{AD}{AD} = \frac{2x}{AD}$		
	DB 4x		
	$=\frac{1}{2}$	(3)	✓ answer
10.4	Area of $\Delta CFB = \frac{1}{2}FB.h$		✓ formula
	Area of $\Delta CFA = \frac{1}{2} AFh$		
	$\frac{2}{2}$		
	AB = FB + AF		\checkmark FB = AF = 3x
	6x = 3x + 3x (AB = 6x from QUESTION 10.3)		
	$Area \Delta CFB = \frac{1}{2} \cdot 3x \cdot h$		
	$\therefore \frac{1}{Area \ \Delta CFA} = \frac{1}{\frac{1}{2}.3x.h}$		
	$=\frac{1}{2}$		
	1		
	\therefore Area of $\triangle CFB =$ Area of $\triangle CFA$	(3)	✓ answer
		[8]	
	TOTAL:	100	